Correlational Dueling Bandits with Application to Clinical Treatment in Large Decision Spaces
نویسندگان
چکیده
We consider sequential decision making under uncertainty, where the goal is to optimize over a large decision space using noisy comparative feedback. This problem can be formulated as a Karmed Dueling Bandits problem where K is the total number of decisions. When K is very large, existing dueling bandits algorithms suffer huge cumulative regret before converging on the optimal arm. This paper studies the dueling bandits problem with a large number of arms that exhibit a low-dimensional correlation structure. Our problem is motivated by a clinical decision making process in large decision space. We propose an efficient algorithm CORRDUELwhich optimizes the exploration/exploitation tradeoff in this large decision space of clinical treatments. More broadly, our approach can be applied to other sequential decision problems with large and structured decision spaces. We derive regret bounds, and evaluate performance in simulation experiments as well as on a live clinical trial of therapeutic spinal cord stimulation. To our knowledge, this marks the first time an online learning algorithm was applied towards spinal cord injury treatments. Our experimental results show the effectiveness and efficiency of our approach.
منابع مشابه
Multi-dueling Bandits with Dependent Arms
The dueling bandits problem is an online learning framework for learning from pairwise preference feedback, and is particularly wellsuited for modeling settings that elicit subjective or implicit human feedback. In this paper, we study the problem of multi-dueling bandits with dependent arms, which extends the original dueling bandits setting by simultaneously dueling multiple arms as well as m...
متن کاملDouble Thompson Sampling for Dueling Bandits
In this paper, we propose a Double Thompson Sampling (D-TS) algorithm for dueling bandit problems. As its name suggests, D-TS selects both the first and the second candidates according to Thompson Sampling. Specifically, D-TS maintains a posterior distribution for the preference matrix, and chooses the pair of arms for comparison according to two sets of samples independently drawn from the pos...
متن کاملUtility-based Dueling Bandits as a Partial Monitoring Game
Partial monitoring is a generic framework for sequential decision-making with incomplete feedback. It encompasses a wide class of problems such as dueling bandits, learning with expect advice, dynamic pricing, dark pools, and label efficient prediction. We study the utility-based dueling bandit problem as an instance of partial monitoring problem and prove that it fits the time-regret partial m...
متن کاملReducing Dueling Bandits to Cardinal Bandits
We present algorithms for reducing the Dueling Bandits problem to the conventional (stochastic) Multi-Armed Bandits problem. The Dueling Bandits problem is an online model of learning with ordinal feedback of the form “A is preferred to B” (as opposed to cardinal feedback like “A has value 2.5”), giving it wide applicability in learning from implicit user feedback and revealed and stated prefer...
متن کاملGeneric Exploration and K-armed Voting Bandits
We study a stochastic online learning scheme with partial feedback where the utility of decisions is only observable through an estimation of the environment parameters. We propose a generic pure-exploration algorithm, able to cope with various utility functions from multi-armed bandits settings to dueling bandits. The primary application of this setting is to offer a natural generalization of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017